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Model theory vs Graph theory

c© Gabriel Conant c© Felix Reidl
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Transductions
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Transductions

How to encode graphs in a structure?

• Use a formula ϕ(x, y) to define the edges,
• Use colors to encode several graphs in a same graph,
• Extract induced subgraphs.

C // // D

Remark
Transduction compose. In particular,

C // // D // // E =⇒ C // // E
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Transduction: Color, Compute, and Cut

ϕ
T
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Example 1: from edgeless graphs

Edgeless // // Blowing of a fixed graph
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Example 2: from bounded height trees

Bounded height trees // // Bounded shrub-depth

More:

C has bounded shrub-depth ⇐⇒ (∃n) Yn // // C
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Example 3: from circle graphs

Interval graphs // // All graphs
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Example 4: from unit interval graphs

Unit interval graphs // // Half-graphs

Problem
Can we get all graphs? Probably not!
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Example 5: from interval graphs

a b

a b

Interval graphs // // All graphs
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Monadic dependence and stability

Monadically NIP Monadically Stable

Every definable class in a
monadic lift has bounded
VC-dimension

Every definable class in a
monadic lift has bounded
Littlestone dimension

No monadic lift can
interpret all element-set
graphs

No monadic lift can
interpret all half graphs

C � // // G C � // // LO
(Baldwin, Shelah ’85)
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Monadic dependence and stability

• Circle graphs are not monadically NIP.
• Interval graphs are not monadically NIP.
• Unit interval graphs are not monadically stable (but

monadically NIP?).
• Cographs are not monadically stable, but monadically NIP.
• Every transduction of a bounded expansion class is

monadically stable (Adler & Adler ’14).
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Sparsification & Decomposition
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Sparsification
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Vertex bloc: bounded depth cographs
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Edge bloc: bounded depth bi-cographs
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(c, d)-fold coloring
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(c, d)-fold coloring
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Sparsification: Cut & Paste
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Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM,
Pilipczuk, Siebertz, Toruńczyk ’18)

For a class of graphs C with (c, d)-fold coloring the following are
equivalent:
• C has low shrub-depth decompositions
• Sparsify(C) has tree-depth decompositions;
• Sparsify(C) has bounded expansion.
• C has structurally bounded expansion;

If (c, d)-fold colorings can be computed in time F (n) for G ∈ C
then checking a first-order sentence φ on C can be done in time

F (n) + C(φ, C)n.
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Decompositions

Low rank-width decomposition

Low linear rank-width decomposition

Low shrub-depth decomposition

Low tree-depth decomposition

Monadically stable

⇒ linearly χ-bounded

⇒ χ-bounded

⇑

⇑

⇑

⇐⇒

⇐⇒

BE

SBE

(Kwon, Pilipczuk, Siebertz ’17)

Monadically NIP?

(Dvořák, Kral’ ’12)
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Decompositions (examples)

• Interval graphs do not have low rank-width decomposition
(Kwon, Pilipczuk, Siebertz ’17)
• Unit interval graphs have low rank-width decomposition

but unbounded rank-width (Golumbic, Rotics ’99 and
Kwon, Pilipczuk, Siebertz ’17)
• Cographs have bounded rank-width but no low linear

rank-width decomposition
• Half-graphs have bounded linear rank-width but have no

low shrub-depth decomposition (follows from Adler2 ’14
and Gajarský et al. ’18).
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Rank-width
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Cut-rank
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Rank-width
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Rank-width and Linear rank-width

Rank-width Linear rank-width

Subcubic rank-decomposition
tree with bounded width

Caterpillar rank-decomposition
tree with bounded width

TO // // C LO // // C
(Colcombet ’07)

Remark
Bounded rank-width implies monadically NIP.
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Rank-width and Linear rank-width

Intuitively:

Dense Sparse

Rank-width ←→ Treewidth

Linear rank-width ←→ Pathwidth

? ←→ Bandwidth

Shrub-depth ←→ Tree-depth
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Rank-width and Linear rank-width

On reflection. . .

Monadically NIP Monadically Stable Sparse
C � // // G C � // // LO

Rank-width ↔ T(Treewidth) ↔ Treewidth

Linear rank-width ↔ T(Pathwidth) ↔ Pathwidth

T(Path) ↔ Bandwidth

Shrub-depth ↔ Tree-depth
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Restricted Dualities

Assume LO // // C . Is it true that

C � // // LO ⇐⇒ (∃n) PWn
// // C ?

Assume TO // // C . Is it true that

C � // // LO ⇐⇒ (∃n) T Wn
// // C ?
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Rank-width and stability

Theorem (Nešetřil, POM, Rabinovich, Siebertz ’19+)

Let C be a class of graphs. The following are equivalent:
1. C has bounded linear rank-width and excludes some semi-

induced half-graph,
2. C is a transduction of a class with bounded pathwidth.

Corollary
Let C be a class of graphs. The following are equivalent:
1. C is monadically stable and has low linear rank-width de-

compositions,
2. C has structurally bounded expansion.
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Linear rank width

v

R(v)

There exists a linear order < with the property that for every
v ∈ V

cutrk(V −R(v), R(v)) ≤ r
⇐⇒ dimZ2

({
N(u) ∩R(v) | u < v

})
≤ r

=⇒
∣∣{N(u) ∩R(v) | u < v

}∣∣ ≤ 2r
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Types of vertices

Inactive vertex v

(∃u < v) N(u) ∩R(v) = N(v) ∩R(v)

vu

R(v)

Active vertex v

N(ref(v)) ∩R(v̂) = N(v) ∩R(v̂)

vref(v)

R(v̂)

v̂
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Activity intervals

va1 aka2

interval of ak

interval of a1

ref ref

interval of v
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Coding

• Color the intersection graph of activity intervals with 2r + 1
colors  γ(v).
• Let class(v) = (γ(ref(v)), γ(v)).
• Link v to all the ≤ 2r vertices active at v and encode

adjacency to them, and which of them is ref(v).

Then if x < y we have xy ∈ E(G) if and only if
• either y is in the activity interval of x and the code of y

indicates that y is adjacent to x,
• or y is not in the activity interval of x and ref(x) is

adjacent to y.
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And so. . .

Problem

Assume y is not in the activity interval of x
and x is not in the activity interval of y.

How to determine wether x < y or y < x?

1. Only matters if adjacency of ref(x) and y is different from
adjacency of ref(y) and x.

2. For every a cut intervals {v | ref(v) = a} into sub-intervals
corresponding to alternations and hard-code order between
sub-intervals.
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Difficult case

u1 v1 u2 v2 ui vi uk vkab

ref(ui) = a and ref(vi) = b.

 uivj ∈ E(G) ⇐⇒ i ≤ j.
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More?

Conjecture
Let C be a class of graphs. The following are equivalent:
1. C has bounded linear rank-width and is monadically stable,
2. C is a transduction of a class with bounded treewidth.

If true, the following are equivalent:
1. C is monadically stable and has low rank-width decomposi-

tions,
2. C has structurally bounded expansion.
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Full Dualities?

Conjecture
A class of graphs C has bounded shrub-depth if and only there is
no surjective transduction from C to the class of all finite paths.

This would corresponds to a duality between bounded height trees
and paths:

C � // // P ⇐⇒ (∃n) Yn // // C

Remark
It is well known that Yn � // // P . Hence

C � // // P ⇐= (∃n) Yn // // C
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Thank you for your
attention.
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